Training GAN model(detail)

import time
num_epochs = 100
batch_size = 64
image_size = (28, 28)
z_size = 20
mode_z = 'uniform'
gen_hidden_layers = 1
gen_hidden_size = 100
disc_hidden_layers = 1
disc_hidden_size = 100
tf.random.set_seed(1)
np.random.seed(1)
if mode_z == 'uniform':
fixed_z = tf.random.uniform(
shape=(batch_size, z_size),
minval=-1, maxval=1)
elif mode_z == 'normal':
fixed_z = tf.random.normal(
shape=(batch_size, z_size))
def create_samples(g_model, input_z):
g_output = g_model(input_z, training=False)
images = tf.reshape(g_output, (batch_size, *image_size))
return (images+1)/2.0
##
mnist_trainset = mnist['train']
mnist_trainset = mnist_trainset.map(
lambda ex: preprocess(ex, mode=mode_z))
mnist_trainset = mnist_trainset.shuffle(10000)
mnist_trainset = mnist_trainset.batch(
batch_size, drop_remainder=True)
##
with tf.device(device_name):
gen_model = make_generator_network(
num_hidden_layers=gen_hidden_layers,
num_hidden_units=gen_hidden_size,
num_output_units=np.prod(image_size))
gen_model.build(input_shape=(None, z_size))
disc_model = make_discriminator_network(
num_hidden_layers=disc_hidden_layers,
num_hidden_units=disc_hidden_size)
disc_model.build(input_shape=(None, np.prod(image_size)))
## :
loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True)
g_optimizer = tf.keras.optimizers.Adam()
d_optimizer = tf.keras.optimizers.Adam()
all_losses = []
all_d_vals = []
epoch_samples = []
start_time = time.time()
for epoch in range(1, num_epochs+1):
epoch_losses, epoch_d_vals = [], []
for i,(input_z,input_real) in enumerate(mnist_trainset):
##
with tf.GradientTape() as g_tape:
g_output = gen_model(input_z)
d_logits_fake = disc_model(g_output, training=True)
labels_real = tf.ones_like(d_logits_fake)
g_loss = loss_fn(y_true=labels_real, y_pred=d_logits_fake)
# g_loss
g_grads = g_tape.gradient(g_loss, gen_model.trainable_variables)
# :
g_optimizer.apply_gradients(
grads_and_vars=zip(g_grads, gen_model.trainable_variables))
##
with tf.GradientTape() as d_tape:
d_logits_real = disc_model(input_real, training=True)
d_labels_real = tf.ones_like(d_logits_real)
d_loss_real = loss_fn(
y_true=d_labels_real, y_pred=d_logits_real)
d_logits_fake = disc_model(g_output, training=True)
d_labels_fake = tf.zeros_like(d_logits_fake)
d_loss_fake = loss_fn(
y_true=d_labels_fake, y_pred=d_logits_fake)
d_loss = d_loss_real + d_loss_fake
## d_loss
d_grads = d_tape.gradient(d_loss, disc_model.trainable_variables)
## :
d_optimizer.apply_gradients(
grads_and_vars=zip(d_grads, disc_model.trainable_variables))
epoch_losses.append(
(g_loss.numpy(), d_loss.numpy(),
d_loss_real.numpy(), d_loss_fake.numpy()))
d_probs_real = tf.reduce_mean(tf.sigmoid(d_logits_real))
d_probs_fake = tf.reduce_mean(tf.sigmoid(d_logits_fake))
epoch_d_vals.append((d_probs_real.numpy(), d_probs_fake.numpy()))
all_losses.append(epoch_losses)
all_d_vals.append(epoch_d_vals)
print(
' {:03d} | {:.2f} min | >>'
' / {:.4f}/{:.4f} [-: {:.4f} -: {:.4f}]'
.format(
epoch, (time.time() - start_time)/60,
*list(np.mean(all_losses[-1], axis=0))))
epoch_samples.append(
create_samples(gen_model, fixed_z).numpy())